

# 500mA Low Quiescent Current CMOS LDO

#### **DESCRIPTION**

TS9013 is a positive voltage regulator developed utilizing CMOS technology featured very low power consumption, low dropout voltage and high output voltage accuracy. Built in low on-resistor provides low dropout voltage and large output current. A 2.2µF or greater can be used as an output capacitor.TS9013 are prevented device failure under the worst operation condition with both thermal shutdown and current fold-back. These series are recommended for configuring portable devices and large current application, respectively.

#### **FEATURES**

- Output current up to 500mA
- Low power consumption, 15μA(typ.) @V<sub>O</sub>=5V
- Output voltage ±2%
- Internal current limit
- Thermal shutdown protection
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC.
- Halogen-free according to IEC 61249-2-21

### **APPLICATION**

- Palmtops
- Video recorders
- Battery powered equipment
- PC peripherals
- CD-ROM, DVD ROM
- Digital signal camera



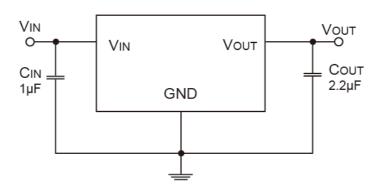


**SOT-89** 



Pin Definition:

- 1. Ground
- 2. Input
- 3. Output


**SOT-223** 



#### Pin Definition:

- 1. Input
- 2. Ground
- 3. Output

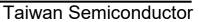
### **TYPICAL APPLICATION CIRCUIT**



1



| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25°C unless otherwise noted) |         |                  |            |      |  |  |  |  |
|-------------------------------------------------------------------------|---------|------------------|------------|------|--|--|--|--|
| PARAMETER                                                               |         | SYMBOL           | LIMIT      | UNIT |  |  |  |  |
| Input Supply Voltage                                                    |         | $V_{IN}$         | 12         | V    |  |  |  |  |
| Recommend Operating Input Voltage                                       |         | $V_{IN}$         | 10         | V    |  |  |  |  |
| Output Current                                                          |         | lo               | 500        | mA   |  |  |  |  |
| Power Dissipation (without heat sink)                                   | SOT-89  | P <sub>D</sub>   | 0.5        | W    |  |  |  |  |
|                                                                         | SOT-223 |                  | 0.7        |      |  |  |  |  |
| Operating Junction Temperature Range                                    |         | TJ               | -40 ~ +150 | °C   |  |  |  |  |
| Storage Temperature Range                                               |         | T <sub>STG</sub> | -65 ~ +150 | °C   |  |  |  |  |
| Lead Soldering Temperature (260°C)                                      |         |                  | 5          | S    |  |  |  |  |


**Notes:** Stress above the listed absolute rating may cause permanent damage to the device.

| PARAMETER                                 | CONDITIO                                                | ONS     | MIN  | TYP | MAX  | UNIT   |
|-------------------------------------------|---------------------------------------------------------|---------|------|-----|------|--------|
|                                           |                                                         | TS90135 | 4.90 | 5.0 | 5.10 | V      |
|                                           | $V_{IN}=V_O + 1V$ ,<br>Io =1mA,                         | TS9013S | 3.23 | 3.3 | 3.36 |        |
|                                           |                                                         | TS9013K | 2.45 | 2.5 | 2.55 |        |
|                                           |                                                         | TS9013D | 1.76 | 1.8 | 1.83 |        |
| Output Voltage                            |                                                         | TS90135 | 4.85 | 5.0 | 5.10 |        |
|                                           | $V_{IN}=V_O+1V$ ,                                       | TS9013S | 3.20 | 3.3 | 3.36 | V      |
|                                           | I <sub>O</sub> =1mA ~ 500mA                             | TS9013K | 2.42 | 2.5 | 2.55 |        |
|                                           |                                                         | TS9013D | 1.74 | 1.8 | 1.83 |        |
| Maximum Output Current                    | $V_{IN}=V_O+1V$ ,                                       |         | 500  |     |      | mA     |
| Input Stability                           | $V_{O}+1V \le V_{IN} \le V_{O}+2V, I_{O}=1mA$           |         |      | 0.2 | 0.3  | %      |
| Load Regulation (Note1)                   | $V_{IN}=V_O+1V$ ,                                       | TS90135 |      | 40  | 80   | mV     |
|                                           | $1mA \le IL \le 500mA$                                  | TS9013S |      |     |      |        |
|                                           | $V_{IN}=V_O+1V$ ,                                       | TS9013K |      | 40  | 90   |        |
|                                           | $1mA \le IL \le 500mA$                                  | TS9013D |      |     |      |        |
| Dropout Voltage (Note 2)                  | I <sub>O</sub> =300mA                                   | TS90135 |      | 300 | 500  | mV     |
|                                           |                                                         | TS9013S |      |     |      |        |
|                                           | I <sub>O</sub> =500mA                                   | TS90135 |      | 500 | 600  |        |
|                                           |                                                         | TS9013S |      |     |      |        |
|                                           | I <sub>O</sub> =500mA                                   | TS9013K |      | 600 | 850  |        |
|                                           |                                                         | TS9013D |      |     |      |        |
| Quiescent Current                         | V <sub>IN</sub> =V <sub>O</sub> +1V, I <sub>O</sub> =0A |         |      | 15  | 25   | μΑ     |
| Output Current Limit                      | V <sub>OUT</sub> < 0.4V                                 |         | 550  |     |      | mA     |
| Power Supply Rejection<br>Ratio           | At f=100KHz, I <sub>O</sub> =10mA                       |         |      | 30  |      | dB     |
| Output Voltage Temperature<br>Coefficient |                                                         |         |      | 100 |      | ppm/°C |

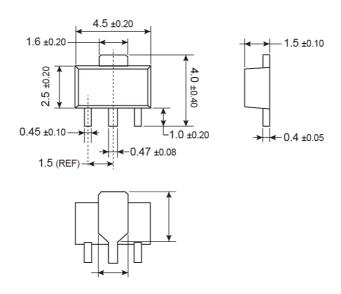
#### Note:

 $<sup>{\</sup>it 1. Regulation is measured at constant junction temperature, using pulsed ON time.}\\$ 

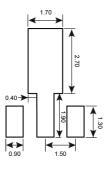
<sup>2.</sup> Dropout is measured at constant junction temperature, using pulsed ON time, and the criterion is  $V_{\text{OUT}}$  inside target value +/- 3%.






# **ORDERING INFORMATION**

| OUTPUT VOLTAGE | PART NO.      | PACKAGE | PACKING             |
|----------------|---------------|---------|---------------------|
| 1.8V           | TS9013DCW RPG | SOT-223 | 2,500pcs / 13" Reel |
|                | TS9013DCY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 2.5V           | TS9013KCW RPG | SOT-223 | 2,500pcs / 13" Reel |
| 3.3V           | TS9013SCW RPG | SOT-223 | 2,500pcs / 13" Reel |
|                | TS9013SCY RMG | SOT-89  | 1,000pcs / 7" Reel  |
| 5V             | TS90135CW RPG | SOT-223 | 2,500pcs / 13" Reel |




# PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

### **SOT-89**



# **SUGGESTED PAD LAYOUT (Unit: Millimeters)**



4

## **MARKING DIAGRAM**

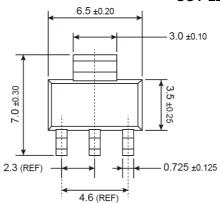


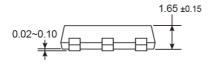
Y = Year Code

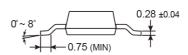
M = Month Code for Halogen Free Product

**P** =Feb O =Jan Q =Mar R =Apr

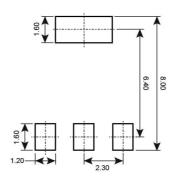
S =May **T** =Jun **U** =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec


L = Lot Code (1~9, A~Z)


**X** = Fixed Output Voltage Code **18**=1.8V, **33**=3.3V, **50**=5.0V..




# PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


**SOT-223** 







## SUGGESTED PAD LAYOUT (Unit: Millimeters)



5

## **MARKING DIAGRAM**



Y = Year Code

**M** = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr

S =May T =Jun U =Jul V =Aug

W = Sep X = Oct Y = Nov Z = Dec

**L** = Lot Code (1~9, A~Z)

**X** = Fixed Output Voltage Code

**18**=1.8V, **25**=3.3V, **33**=3.3V, **50**=5.0V..



### **Notice**

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.